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1. Introduction

In recent years a lot of effort has been devoted to the extension of the subtraction method

of computing QCD corrections at the next-to-leading order (NLO) accuracy to the com-

putation of the radiative corrections at the next-to-next-to-leading order (NNLO) [1 – 9].

In particular, in ref. [10], a dipole subtraction scheme was defined for computing NNLO
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corrections to QCD jet cross sections to processes without coloured partons in the initial

state and arbitrary number of massless particles (coloured or colourless) in the final state.

That scheme can be summarized as follows.

The NNLO correction to any m-jet cross section is a sum of three contributions, the

doubly-real, the one-loop singly-unresolved real-virtual and the two-loop doubly-virtual

terms,

σNNLO =

∫

m+2
dσRR

m+2Jm+2 +

∫

m+1
dσRV

m+1Jm+1 +

∫

m
dσVV

m Jm . (1.1)

Here the notation for the integrals indicate that the doubly-real corrections involve the fully-

differential cross section dσRR
m+2 of m + 2 final-state partons, the real-virtual contribution

involves the fully-differential cross section for the production of m+1 final-state partons at

one-loop and the doubly-virtual term is an integral of the fully-differential cross section for

the production of m final-state partons at two-loops over the phase space of m partons. The

phase spaces are restricted by the corresponding jet functions Jn that define the physical

quantity.

In d = 4 dimensions the three contributions in eq. (1.1) are separately divergent, but

their sum is finite for infrared-safe observables. (The requirement of infrared safety implies

certain analytic properties of the jet functions Jn that are spelled out in ref. [8].) As

explained in ref. [10] we first continue analitically all integrals to d = 4 − 2ε dimensions

and then rewrite eq. (1.1) as

σNNLO =

∫

m+2
dσNNLO

m+2 +

∫

m+1
dσNNLO

m+1 +

∫

m
dσNNLO

m , (1.2)

that is a sum of integrals,

dσNNLO
m+2 =

{
dσRR

m+2Jm+2 − dσ
RR,A2

m+2 Jm −
[
dσ

RR,A1

m+2 Jm+1 − dσ
RR,A12

m+2 Jm

]}
ε=0

, (1.3)

dσNNLO
m+1 =

{[
dσRV

m+1 +

∫

1
dσ

RR,A1

m+2

]
Jm+1 −

[
dσ

RV,A1

m+1 +
( ∫

1
dσ

RR,A1

m+2

)
A1

]
Jm

}
ε=0

, (1.4)

and

dσNNLO
m =

{
dσVV

m +

∫

2

[
dσ

RR,A2

m+2 −dσ
RR,A12

m+2

]
+

∫

1

[
dσ

RV,A1

m+1 +
(∫

1
dσ

RR,A1

m+2

)
A1

]}
ε=0

Jm , (1.5)

each integrable in four dimensions by construction. Here dσ
RR,A1

m+2 and dσ
RR,A2

m+2 are approx-

imate cross sections that regularize the doubly-real emission cross section in the one- and

two-parton infrared regions of the phase space, respectively. The double subtraction due

to the overlap of these two terms is compensated by dσ
RR,A12

m+2 . These terms are defined in

ref. [10] explicitly, where the finiteness of dσNNLO
m+2 is demonstrated also numerically for the

case of e+e− →3 jets (m = 3). We point out that the notation in eqs. (1.3) and (1.4) is

symbolic in the sense that each subtraction term is actually a sum of different terms. The

jet functions in these terms depend on different sets of momenta. These sets of momenta

for the jet function Jm in eq. (1.4) will be presented in this paper.

In ref. [11], we computed the integral
∫
1 dσ

RR,A1

m+2 and showed that the terms in the first

bracket in eq. (1.4) do not contain ε poles. Nevertheless, those terms still lead to divergent
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integrals due to kinematical singularities in the one-parton unresolved parts of the phase

space. In this paper we define explicitly dσ
RV,A1

m+1 and
( ∫

1 dσ
RR,A1

m+2

)
A1

, that regularize the

singly-unresolved limits of the real-vitrual cross section and
∫
1 dσ

RR,A1

m+2 in turn. Thus we

complete the presention of all formulae relevant for constructing dσNNLO
m+1 explicitly.

2. Notation

2.1 Matrix elements

We consider processes with coloured particles (partons) in the final states, while the initial-

state particles are colourless (tipically electron-positron annihilation into hadrons). Any

number of additional non-coloured final-state particles is allowed, too, but they will be

suppressed in the notation. Resolved partons in the final state are labelled by i, k, l, . . . ,

the unresolved one is denoted by r.

We adopt the colour- and spin-state notation of ref. [12]. In this notation the am-

plitude for a scattering process involving the final-state momenta {p}, |Mm({p})〉, is an

abstract vector in colour and spin space, and its normalization is fixed such that the squared

amplitude summed over colours and spins is

|Mm|2 = 〈Mm||Mm〉 . (2.1)

This matrix element has the following formal loop expansion:

|M〉 = |M(0)〉 + |M(1)〉 + . . . , (2.2)

where |M(0)〉 denotes the tree-level contribution, |M(1)〉 is the one-loop contribution and

the dots stand for higher-loop contributions, which are not used in this paper.

Colour interactions at the QCD vertices are represented by associating colour charges

T i with the emission of a gluon from each parton i. In the colour-state notation, each

vector |M〉 is a colour-singlet state, so colour conservation is simply

(∑

j

T j

)
|M〉 = 0 , (2.3)

where the sum over j extends over all the external partons of the state vector |M〉, and

the equation is valid order by order in the loop expansion of eq. (2.2).

Using the colour-state notation, we define the two-parton colour-correlated squared

tree amplitudes as

|M(0)
(i,k)({p})|

2 ≡ 〈M(0)({p})|T i ·T k |M(0)({p})〉 (2.4)

and similarly the three-parton colour-correlated squared tree amplitudes, |M(0)
(i,k,l)|2 for i, k

and l being different, and the doubly two-parton colour-correlated squared tree amplitudes

|M(0)
(i,k),(j,l)|2:

|M(0)
(i,k,l)|2 ≡

∑

a,b,c

fabc〈M(0)|T a
i T b

kT c
l |M(0)〉 (2.5)
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and

|M(0)
(i,k)(j,l)|

2 ≡ 〈M(0)| {T i · T k,T j · T l} |M(0)〉 , (2.6)

where the anticommutator {T i ·T k,T j ·T l} is non-trivial only if i = j or k = l, see eq. (2.8).

We shall also use the two-parton colour-correlated one-loop amplitude, defined using an

analogous notation:

2Re〈M(0)||M(1)〉(i,k) ≡ 2Re〈M(0)|T i ·T k |M(1)〉 . (2.7)

The colour-charge algebra for the product (T i)
n(T k)

n ≡ T i ·T k is:

T i ·T k = T k ·T i if i 6= k; T
2
i = Ci . (2.8)

Here Ci is the eigenvalue of the quadratic Casimir operator in the representation of particle

i and we have CF = TR(N2
c − 1)/Nc = (N2

c − 1)/(2Nc) in the fundamental and CA =

2TRNc = Nc in the adjoint representation, i.e. we are using the customary normalization

TR = 1/2.

2.2 Dimensional regularization, one-loop amplitudes and renormalization

We employ conventional dimensional regularization (CDR) in d = 4−2ε space-time dimen-

sions to regulate both the IR and UV divergences, when quarks (spin-1
2 Dirac fermions)

possess 2 spin polarizations, gluons have d− 2 helicity states and all particle momenta are

taken as d-dimensional.

Turning to the renormalization of the amplitudes, let the perturbative expansion of

the scattering amplitude Am in terms of the bare coupling gs ≡
√

4παu
s be

|Am〉 =

(
αu

s µ2ε

4π

)q/2 [
|A(0)

m 〉 +

(
αu

s µ
2ε

4π

)
|A(1)

m 〉 + O
(
(αu

s )2
)]

, (2.9)

where q is a non-negative integer and µ is the dimensional-regularization scale. For the

renormalized amplitudes (in the CDR scheme) we use the notation |Mm〉. These are

obtained from the unrenormalized amplitudes by expressing the bare coupling in terms of

the running coupling αs(µ
2
R) evaluated at the arbitrary renormalization scale µ2

R as

αu
s µ

2ε = αs(µ
2
R)µ2ε

R S−1
ε

[
1 −

(
αs(µ

2
R)

4π

)
β0

ε
+ O(α2

s (µ
2
R))

]
, (2.10)

where β0 is the first coefficient of the β function for nf number of light quark flavours,

β0 =
11

3
CA − 4

3
TRnf −

2

3
TRns , (2.11)

for QCD ns = 0. In eq. (2.10), Sε is the phase space factor due to the integral over the

(d− 3)-dimensional solid angle, which is included in the definition of the running coupling
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in the MS renormalization scheme,1

Sε =

∫
d(d−3)Ω

(2π)d−3
=

(4π)ε

Γ(1 − ε)
. (2.12)

We always consider the running coupling in the MS scheme defined with the inclusion of

this phase space factor.

The relations between the renormalized amplitudes of eq. (2.2) and the unrenormalized

ones are given as follows:

|M(0)
m 〉 =

(
αs(µ

2
R)µ2ε

R

4π
S−1

ε

)q/2

|A(0)
m 〉 , (2.13)

|M(1)
m 〉 =

(
αs(µ

2
R)µ2ε

R

4π
S−1

ε

)q/2
αs(µ

2
R)

4π
S−1

ε

(
µ2ε

R |A(1)
m 〉 − q

2

β0

ε
Sε |A(0)

m 〉
)

. (2.14)

After UV renormalization, the dependence on µ turns into a dependence on µR, so

physical cross sections depend only on the renormalization scale µR. To avoid a cumber-

some notation, we therefore set µR = µ in the rest of the paper. Furthermore, after the

IR poles are canceled in an NLO, or NNLO computation, we may set ε = 0, therefore, the

µ2ε
R and S−1

ε factors that accompany the running coupling in the renormalized amplitude

do not give any contribution, so we may perform the substitution

(
αs(µ

2
R)µ2ε

R

4π
S−1

ε

)q/2 (
αs(µ

2
R)

4π
S−1

ε

)i

→
(

αs(µ
2
R)

4π

)q/2+i

(2.15)

in eqs. (2.13) and (2.14).

2.3 Remark on regularization-scheme dependence

Although the application of conventional dimensional regularization (CDR) is conceptually

clean, the computation of squared matrix elements is much simpler in other versions of

dimensional regularization, most notably in dimensional reduction (DR). As a result, most

of the multiparton QCD amplitudes |A(n)
m 〉, both at tree-level (n = 0) and one-loop (n =

1), are available in DR. At the level of cross sections however, the CDR scheme is used

traditionally, therefore, the relation between the two schemes has to be established.

The regularization-scheme (RS) dependence of the matrix elements at tree level affect

only terms of O(ε), therefore, in computing the (m + 2)-parton cross section in eq. (1.3)

the RS dependence is completely harmless, the difference vanishes when we take the four-

dimensional limit. The subtraction terms that regularize the real emission also depend on

the RS. While this dependence does not influence dσNNLO
m+2 , it leads to differences (even

in divergent terms) when the subtraction terms are integrated over the factorized phase

1The MS renormalization scheme as often employed in the literature uses Sε = (4π)εe−εγE . It is not

difficult to check that the two definitions lead to the same expressions in a computation at the NLO accuracy.

At NNLO these lead to slightly different bookkeeping of the IR and UV poles at intermediate steps of the

computation, but the physical cross section of infrared-safe observables is the same. Our definition leads to

somewhat simpler bookkeeping at the NNLO level.
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space of the unresolved parton(s). The standard practice in the literature is to set up the

subtraction scheme in CDR and transform the loop matrix elements to CDR if those were

obtained in other schemes, for instance, in DR.

The RS dependence in the loop amplitudes has in general both ultraviolet (UV) and

infrared (IR) origin. Both have been discussed thoroughly up to two loops in ref. [13]. In

the present paper we deal only with one-loop amplitudes and we summarize the transition

rules from DR to CDR here.

The UV part of the RS dependence is due to the RS dependence of the renormalization

procedure. At the one-loop level it means that eq. (2.14) remains valid, with the same

expansion parameter, no matter in which RS the bare amplitudes are computed if we

perform the substitution [12]

β0 → β0 + εβ̃RS
0 (2.16)

in eqs. (2.10) and (2.14). By definition in CDR β̃CDR
0 = 0. If the bare amplitudes are

computed in the DR scheme, then β̃DR
0 = −CA/6.

The IR part of the RS dependence can be decomposed into universal finite terms and

non-universal contributions at O(ε) [14]. The finite terms are completely factorized,

|A(1)fin
m,RS(µ

2; {p})〉 =
1

2

(
∑

i

γ̃RS
i

)
|A(0)

m,RS(µ
2; {p})〉 + |F (1)

m (µ2; {p})〉 + O(ε) , (2.17)

while the O(ε) contributions do not contribute to dσNNLO
m+1 in the four-dimensional limit.

The transition coefficients that relate the amplitudes in the RS’s depend only on the flavour

of the external partons and were first computed in ref. [15]. If γ̃CDR
i = 0, as always assumed

by definition, then

γ̃DR
q =

CF

2
, γ̃DR

g =
CA

6
. (2.18)

2.4 Cross sections

In our notation the real-virtual cross section dσRV
m+1 is given by

dσRV
m+1 = dφm+1({p}) 2Re〈M(0)

m+1|M
(1)
m+1〉 , (2.19)

where dφm+1({p}) is the d-dimensional phase space for m + 1 outgoing particles with

momenta {p} ≡ {p1, . . . , pm+1} and total momentum Q,

dφm+1(p1, . . . , pm+1;Q) =

[
m+1∏

i=1

ddpi

(2π)d−1
δ+(p2

i )

]
(2π)dδ(d)(p1 + · · · + pm+1 − Q) . (2.20)

The integral of the singly-unresolved approximate cross section for doubly-real emission

over the factorized one-parton phase space was computed in ref. [11]
∫

1
dσ

RR,A1

m+2 = dσR
m+1 ⊗ I(m, ε) , (2.21)

where dσR
m+1 is the Born-level cross section for the emission of m + 1 partons and I(m, ε)

is an operator acting on the colour space of the m + 1 final-state partons. The notation on

– 6 –
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the right hand side means that one has to write down the expression for dσR
m+1 and then

replace the Born-level squared matrix element

|M(0)
m+1|2 = 〈M(0)

m+1|M
(0)
m+1〉 , (2.22)

by

〈M(0)
m+1|I(m, ε)|M(0)

m+1〉 . (2.23)

The insertion operator I(m, ε) differs from the I(ε) operator derived in ref. [12] in non-

singular terms as ε tends to zero. Explicitly,

I({p};m, ε) =
αs

2π
Sε

(
µ2

Q2

)ε ∑

i

[
Ci(yiQ;m, ε)T 2

i +
∑

k 6=i

Sik(yik, yiQ, ykQ;m, ε)T iT k

]

(2.24)

where yik = sik/Q
2 ≡ 2pi ·pk/Q

2, yiQ = 2pi ·Q/Q2 and with

Cq = Cqg − CS ,

Cg =
1

2
Cgg + nfCqq̄ − CS . (2.25)

Explicit expressions for the functions Cik(yiQ;m, ε), Sik(yik, yiQ, ykQ;m, ε) and CS(m, ε)

can be found in ref. [11], where it was shown that the ε poles of the one-loop squared

matrix element 2Re〈M(0)
m+1|M

(1)
m+1〉 are cancelled exactly by 〈M(0)

m+1|I({p};m, ε)|M(0)
m+1〉.

3. Counterterms for the real-virtual cross section

3.1 Factorization in the collinear and soft limits

In order to devise the approximate cross section dσ
RV,A1

m+1 , we have to study the factorization

properties of one-loop squared matrix elements when one parton becomes soft or collinear

to another parton. The relevant factorization formulae have been computed in refs. [16 –

21]. In our work we use the formulae of ref. [20] for collinear parton splitting and those in

ref. [21] for soft gluon emission. However, the notation in those papers is not convenient

for writing factorization formulae which avoid double counting in the soft-collinear limit,

therefore, we present new formulae here.

3.1.1 Collinear limit

We define the collinear limit of two final-state momenta pi and pr with the help of an

auxiliary light-like vector nµ
ir (n2

ir = 0) using the usual Sudakov parametrization,

pµ
i = zip

µ
ir − kµ

⊥,r −
k2
⊥,r

zi

nµ
ir

2pirnir
, pµ

r = zrp
µ
ir + kµ

⊥,r −
k2
⊥,r

zr

nµ
ir

2pirnir
, (3.1)

where pµ
ir is a light-like momentum that points towards the collinear direction and k⊥,r is

the momentum component that is orthogonal to both pir and nir (pir ·k⊥,r = nir ·k⊥,r = 0).

Momentum conservation requires that zi + zr = 1. The two-particle invariant mass of the

collinear partons is

sir = −
k2
⊥,r

zizr
. (3.2)

– 7 –



J
H
E
P
0
1
(
2
0
0
7
)
0
5
2

The collinear limit is defined by the uniform rescaling

k⊥,r → λk⊥,r , (3.3)

and taking the limit λ → 0, when the one-loop squared matrix element of an (m+1)-parton

process has the following asymptotic form [20]:2

2Re〈M(0)
m+1(pi, pr, . . .)||M(1)

m+1(pi, pr, . . .)〉 '

' 8παsµ
2ε 1

sir

[
2Re〈M(0)

m (pir, . . .)|P̂ (0)
fifr

|M(1)
m (pir, . . .)〉

+ 8παs cΓ

(
µ2

sir

)ε

cos(πε) 〈M(0)
m (pir, . . .)|P̂ (1)

fifr
|M(0)

m (pir, . . .)〉
]

(3.4)

where

cΓ =
1

(4π)2−ε

Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)
. (3.5)

The meaning of the ' sign in eq. (3.4) is that we have neglected subleading terms (in

this case those that are less singular than 1/λ2). In order to simplify further discussion,

following the notation of ref. [8], we introduce a symbolic operator Cir that performs the

action of taking the collinear limit of the one-loop squared matrix element, keeping the

leading singular term:

Cir 2Re〈M(0)
m+1(pi, pr, . . .)||M(1)

m+1(pi, pr, . . .)〉 =

= 8παsµ
2ε 1

sir

[
2Re〈M(0)

m (pir, . . .)|P̂ (0)
fifr

|M(1)
m (pir, . . .)〉

+ 8παs cΓ

(
µ2

sir

)ε

cos(πε) 〈M(0)
m (pir, . . .)|P̂ (1)

fifr
|M(0)

m (pir, . . .)〉
]
. (3.6)

The m-parton matrix elements on the right-hand side of eq. (3.4) are obtained from

the (m + 1)-parton matrix elements by removing partons i and r and replacing them with

a single parton denoted by ir. The parton ir carries the quantum numbers of the pair

i + r in the collinear limit: its momentum is pµ
ir and its other quantum numbers (flavour,

colour) are obtained according to the following rule: anything + gluon gives anything and

quark + antiquark gives gluon. The kernels P̂
(0)
fifr

and P̂
(1)
fifr

are the d-dimensional Altarelli-

Parisi splitting functions and their one-loop corrections, which depend on the momentum

fractions of the decay products and on the relative transverse momentum of the pair. For

the sake of simplicity, we label the momentum fractions belonging to a certain parton

flavour with the corresponding label of the squared matrix element, zfi
= zi. In the case

of splitting into a pair, only one momentum fraction is independent, yet, we find it more

convenient to keep the functional dependence on both zi and zr. Depending on the fi

2Since we deal with final-state singularities only, we have sir > 0 and we can write the usual factor

(−µ2/sir)
ε as (µ2/sir)

ε cos(πε).
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flavours of the splitting products the explicit functional forms are3

〈µ|P̂ (0)
gigr

(zi, zr, k
µ
⊥; ε)|ν〉 = 2CA

[
−gµν

(
zi

zr
+

zr

zi

)
− 2(1 − ε)zizr

kµ
⊥kν

⊥

k2
⊥

]
, (3.7)

〈µ|P̂ (0)
q̄iqr

(zi, zr, k
µ
⊥; ε)|ν〉 = TR

[
−gµν + 4zizr

kµ
⊥kν

⊥

k2
⊥

]
, (3.8)

〈r|P̂ (0)
qigr

(zi, zr; ε)|s〉 = δrsCF

[
1 + z2

i

zr
− εzr

]
≡ δrsP

(0)
qigr

(zi, zr; ε) , (3.9)

where in the last equation we introduced our notation for the spin-averaged splitting func-

tion,

Pfifr
(zi, zr; ε) ≡ 〈P̂fifr

(zi, zr, k
µ
⊥; ε)〉 . (3.10)

The one-loop kernels are

〈µ|P̂ (1)
gigr

(zi, zr, k
µ
⊥; ε)|ν〉 = rgigr

S.,ren(zi, zr; ε)〈µ|P̂ (0)
gigr

(zi, zr, k
µ
⊥; ε)|ν〉

− 4CA rgigr
N.S.

[
1 − 2εzizr

]kµ
⊥kν

⊥

k2
⊥

, (3.11)

〈µ|P̂ (1)
q̄iqr

(zi, zr, k
µ
⊥; ε)|ν〉 = rq̄iqr

S.,ren(zi, zr; ε)〈µ|P̂ (0)
q̄iqr

(zi, zr, k
µ
⊥; ε)|ν〉 , (3.12)

〈r|P̂ (1)
qigr

(zi, zr; ε)|s〉 = rqigr
S.,ren(zi, zr; ε)〈r|P̂ (0)

qigr
(zi, zr; ε)|s〉 + δrs CF rqigr

N.S.

[
1−εzr

]
. (3.13)

The rS.,ren(zi, zr; ε) singular factors are expressed in terms of corresponding unrenormalized

rS.(zi, zr; ε) factors. The relation between the two forms is given by the equation:

rS.,ren(zi, zr; ε) = rS.(zi, zr; ε) −
β0

2ε

Sε

(4π)2cΓ

[(
µ2

sir

)ε

cos(πε)

]−1

. (3.14)

The unrenormalized rfifr
S. (zi, zr; ε) factors and the rfifr

N.S. factors can be trivially obtained

from the Dµ, 1−loop
fir→fifr

functions, that were computed in ref. [20]. In the case of gluon splitting

those functions are symmetric under the exchange of zi and zr. To make this symmetry

manifest, we have re-cast the original expression of ref. [20] for the gluon splitting into a

qq̄ pair into an equivalent form which exhibits the zi ↔ zr symmetry,

rq̄iqr
S. (zi, zr; ε) =

1

ε2
(CA−2CF) +

CA

ε2

∞∑

m=1

εm

[
Lim

(−zi

zr

)
+ Lim

(−zr

zi

)]
(3.15)

+
1

1−2ε

[
1

ε

(
11

3
CA−

4TR

3
nf−

2TR

3
ns−3CF

)
+CA−2CF+

CA+4TR(nf−ns)

3(3 − 2ε)

]
.

In the case of gluon splitting into two gluons, the same symmetry is valid, which, however,

we choose not to make manifest. Instead, we use a form, where the polylogarithms are

regular in the zr → 0 limit (which will be convenient when we compute the soft limit of

this expression in section 3.1.3, see eq. (3.24)),

rgigr
S. (zi, zr; ε) = −CA

ε2

[(
zi

zr

)ε πε

sin(πε)
−

∞∑

m=1

2ε2m−1 Li2m−1

(−zr

zi

)]
, (3.16)

3We remind the reader that the formulae are valid in the CDR scheme.
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and similarly in the case of quark splitting,

rqigr
S. (zi, zr; ε) = − 1

ε2

[
CA

(
zi

zr

)ε πε

sin(πε)
+

∞∑

m=1

εm
[
(1 + (−1)m)CA − 2CF

]
Lim

(−zr

zi

)]
.

(3.17)

Eq. (3.16) also shows that polylogarithms with even subscripts do not appear in the ε

expansion of the rgigr
S. singular function for gluon splitting.

The rN.S. non-singular factors do not depend on the momentum fractions,

rgigr
N.S. =

CA(1 − ε) − 2TR(nf − ns)

(1 − 2ε)(2 − 2ε)(3 − 2ε)
, rqigr

N.S. =
CA − CF

1 − 2ε
. (3.18)

In eqs. (3.16) and (3.18) nf and ns denote the number of fundamental fermions and scalars

that can circulate in the loops. The case of QCD is obtained by setting ns = 0.

The gluon-gluon and quark-antiquark splittings are symmetric in the momentum frac-

tions of the two decay products (even though this is not manifest for gluon-gluon splitting),

while the quark-gluon splitting is not. Nevertheless, we do not distinguish the flavour ker-

nels P̂qg and P̂gq. The ordering of the flavour indices and arguments of the Altarelli-Parisi

kernels has no meaning in our notation, i.e.,

P̂fifr
(zi, zr; ε) = P̂frfi

(zr, zi; ε) . (3.19)

Thus, it is sufficient to record the kernel belonging to one ordering. We keep this convention

throughout.

3.1.2 Soft limit

The soft limit is defined by parametrizing the soft momentum as pµ
r = λqµ

r and letting

λ → 0 at fixed qµ
r . Neglecting terms less singular than 1/λ2, it was found [21] that

2Re〈M(0)
m+1(pr, . . .)||M(1)

m+1(pr, . . .)〉 '

−8παsµ
2ε

∑

i

∑

k 6=i

1

2
Sik(r)

{
2Re〈M(0)

m (. . .)|T iT k|M(1)
m (. . .)〉

−8παscΓ

[(
CA

1

ε2

πε

sin(πε)

(
1

2
µ2Sik(r)

)ε

cos(πε) +
β0

2ε

Sε

(4π)2cΓ

)
|M(0)

m;(i,k)(. . .)|
2

−2
π

ε

∑

l 6=i,k

(
1

2
µ2Skl(r)

)ε

|M(0)
m;(i,k,l)(. . .)|2

]}
(3.20)

if r is a gluon. Similarly to the Cir operator of taking the collinear limit, following ref. [8] we

introduce another symbolic operator Sr that performs the action of taking the soft limit

of the squared matrix element, keeping the leading singular terms. With this notation

Sr 2Re〈M(0)
m+1(pr, . . .)||M(1)

m+1(pr, . . .)〉 is equal to the right hand side of eq. (3.20) if r is a

gluon and Sr 2Re〈M(0)
m+1(pr, . . .)||M(1)

m+1(pr, . . .)〉 = 0 if r is a fermion.

– 10 –



J
H
E
P
0
1
(
2
0
0
7
)
0
5
2

In eq. (3.20) the m-parton matrix element on the right-hand side is obtained from the

(m + 1)-parton matrix element on the left-hand side by simply removing the soft parton.

The eikonal factor is

Sik(r) =
2sik

sirsrk
. (3.21)

Note that eq. (3.20) is valid only for the case of final-state partons. The general case can

be found in [21].

3.1.3 Matching the collinear and soft limits

If we want to regularize the squared matrix elements in all singly-unresolved regions of the

phase space then we have to subtract all possible collinear and soft limits, i.e. subtract the

sum
∑

r


∑

i6=r

1

2
Cir + Sr


 2Re〈M(0)

m+1(pi, pr, . . .)||M(1)
m+1(pi, pr, . . .)〉 , (3.22)

where the 1/2 symmetry factor appears because in the summation each collinear configu-

ration is taken into account twice. Subtracting eq. (3.22) we perform a double subtraction

in some regions of the phase space where the soft and collinear limits overlap. In order

to compensate for the double subtraction, we need to find the collinear limit of the right

hand side of eq. (3.20) when gluon r becomes simultaneously collinear to parton i. In

deriving this limit we use that in the collinear limits (i) the factors multiplying two-parton

colour-correlated squared matrix elements are independent of k, therefore using colour

conservation (eq. (2.3)) we can perform the summation over k; (ii) the factors multiplying

the three-parton colour-correlated squared matrix element are symmetric in k and l while

|M(0)
m;(i,k,l)(pi, . . .)|2 is antisymmetric, thus the sum of those terms is zero. Finally we have

CirSr 2Re〈M(0)
m+1(pi, pr, . . .)||M(1)

m+1(pi, pr, . . .)〉 = 8παsµ
2ε 2

sir

zi

zr
T

2
i

×
[
2Re〈M(0)

m (pi, . . .)||M(1)
m (pi, . . .)〉

−8παscΓ

(
CA

1

ε2

πε

sin(πε)

(
µ2

sir

zi

zr

)ε

cos(πε) +
β0

2ε

Sε

(4π)2cΓ

)
|M(0)

m (pi, . . .)|2
]

. (3.23)

Similarly, the soft limit of eq. (3.6) when r is a gluon and zr → 0 is

SrCir 2Re〈M(0)
m+1(pi, pr, . . .)||M(1)

m+1(pi, pr, . . .)〉 = 8παsµ
2ε 2

sir

1

zr
T

2
i

×
[
2Re〈M(0)

m (pi, . . .)||M(1)
m (pi, . . .)〉

−8παscΓ

(
CA

1

ε2

πε

sin(πε)

(
µ2

sir

1

zr

)ε

cos(πε) +
β0

2ε

Sε

(4π)2cΓ

)
|M(0)

m (pi, . . .)|2
]

. (3.24)

Eqs. (3.23) and (3.24) differ by the term zi = 1 − zr in the numerator of eq. (3.23), which

is subleading if r is soft. Therefore, eq. (3.23) can be used to account for the double
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subtraction: it cancels the soft subtraction in the collinear limit by construction,

Cir(Sr − CirSr)2Re〈M(0)
m+1||M

(1)
m+1〉 = 0 , (3.25)

and the Cir −CirSr difference is subleading in the soft limit,

Sr(Cir − CirSr)2Re〈M(0)
m+1||M

(1)
m+1〉 = 0 . (3.26)

Accordingly, in order to remove the double subtraction from eq. (3.22), we have to add

terms like that in eq. (3.23). That amounts to always take the collinear limit of the soft

factorization formula rather than the reverse (like terms in eq. (3.24)). Thus the candidate

for a subtraction term for regularizing the squared matrix element in all singly-unresolved

limits is

A1 2Re〈M(0)
m+1||M

(1)
m+1〉 = (3.27)

∑

r


∑

i6=r

1

2
Cir +


Sr −

∑

i6=r

CirSr





 2Re〈M(0)

m+1(pi, pr, . . .)||M(1)
m+1(pi, pr, . . .)〉 .

Note that the cancellation of the collinear terms in the soft limit actually requires the

symmetry factor multiplying the collinear term, but not the collinear-soft one. This form of

the A1 operator coincides with that derived in ref. [8] for separating the singly-unresolved

kinematical singularities of the squared matrix element at tree-level and is completely

universal.

3.2 Counterterms

The expression given in eq. (3.27) is defined only in the strict soft and/or collinear limits.

In order to define true countertems, we have to extend it over the whole phase space. This

extension requires an exact factorization of the m+1 parton phase space into an m parton

phase space times the phase space measure of the unresolved parton,

dφm+1({p}) = dφm({p̃}) [dp1] , (3.28)

where we introduced the compact notations {p} ≡ {p1, . . . , pm+1} and {p̃} ≡ {p̃1, . . . , p̃m}.
Then the subtraction term that regularizes the kinematical singularities of the real-virtual

cross section can symbolically be written as

dσ
RV,A1

m+1 = dφm[dp1]A1 2Re〈M(0)
m+1||M

(1)
m+1〉 . (3.29)

where we decompose the subtraction term as follows,

A1 2Re〈M(0)
m+1||M

(1)
m+1〉 =

∑

r

[ ∑

i6=r

1

2
C(0,1)

ir ({p}) +

(
S(0,1)

r ({p}) −
∑

i6=r

CirS(0,1)
r ({p})

)]

+
∑

r

[∑

i6=r

1

2
C(1,0)

ir ({p}) +

(
S(1,0)

r ({p}) −
∑

i6=r

CirS(1,0)
r ({p})

)]
.

(3.30)
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All terms above are functions of the original m + 1 momenta that enter the one-loop

squared matrix element. The last terms in each line on the right hand side do not refer

to the collinear limit of anything, but denote functions of the original momenta for which

the notation inherits the operator structure of taking the various limits, but otherwise has

nothing to do with taking limits.

We now turn to the definition of each term in eq. (3.30). Each term will have the

structure that a singular function (Altarelli-Parisi kernel or eikonal factor) is sandwiched

between amplitudes. Both the singular functions and the squared matrix elements have

their own loop expansions. The double superscipt on the subtraction terms refers to the

number of loops in these loop expansions, the first one in the loop expansion of the singular

factor while the second one in the expansion of the squared matrix element.

3.2.1 Collinear counterterms

The collinear counterterms are

C(0,1)
ir ({p})=8παsµ

2ε 1

sir
2Re〈M(0)

m ({p̃}(ir))|P̂ (0)
fifr

(zi,r, zr,i, k⊥,i,r; ε)|M(1)
m ({p̃}(ir))〉 , (3.31)

C(1,0)
ir ({p})=(8παsµ

2ε)2
1

s1+ε
ir

cΓ cos(πε)〈M(0)
m ({p̃}(ir))|P̂ (1)

fifr
(zi,r, zr,i, k⊥,i,r; ε)|M(0)

m ({p̃}(ir))〉.

(3.32)

The momentum fractions zi,r and zr,i are

zi,r =
yiQ

y(ir)Q
and zr,i =

yrQ

y(ir)Q
, (3.33)

while the transverse momentum k⊥,i,r is

kµ
⊥,i,r = ζi,rp

µ
r − ζr,ip

µ
i + ζirp̃

µ
ir , ζi,r = zi,r −

yir

αiry(ir)Q
, ζr,i = zr,i −

yir

αiry(ir)Q
. (3.34)

We used the abbreviations yir = sir/Q
2 ≡ 2pi · pr/Q

2, y(ir)Q = yiQ + yrQ with yiQ =

2pi ·Q/Q2, yrQ = 2pr ·Q/Q2 and Qµ is the total four-momentum of the incoming electron

and positron, while p̃µ
ir and αir are defined below in eqs. (3.36) and (3.37) respectively. This

choice for the transverse momentum is exactly perpendicular to the parent momentum p̃µ
ir

and ensures that in the collinear limit pµ
i ||p

µ
r , the square of kµ

⊥,i,r behaves as

k2
⊥,i,r ' −sirzr,izi,r , (3.35)

as required (independently of ζir). In our computation the longitudinal component, propor-

tional to ζir, does not contribute due to gauge invariance of the matrix elements, therefore,

we may choose ζir = 0. The m momenta {p̃}(ir) ≡ {p̃1, . . . , p̃ir, . . . , p̃m+1} entering the

matrix elements on the right hand side of eqs. (3.31) and (3.32) are

p̃µ
ir =

1

1 − αir
(pµ

i + pµ
r − αirQ

µ) , p̃µ
n =

1

1 − αir
pµ

n , n 6= i, r , (3.36)
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where

αir =
1

2

[
y(ir)Q −

√
y2
(ir)Q − 4yir

]
. (3.37)

This momentum mapping leads to an exact factorization of the phase space in the

form of eq. (3.28). The explicit expression for [dp1] reads

[dp
(ir)
1;m(pr, p̃ir;Q)] = J (ir)

1;m (pr, p̃ir;Q)
ddpr

(2π)d−1
δ+(p2

r) , (3.38)

where the Jacobian is

J (ir)
1;m (pr, p̃ir;Q) = yfir Q

(1 − αir)
(m−1)(d−2)−1 Θ(1 − αir)

2(1 − yfir Q
)αir + y

rfir
+ yfir Q

− yrQ
. (3.39)

In this equation αir has to be expressed as a function of the variable p̃ir,

αir =

√
(y

rfir
+ yfir Q

− yrQ)2 + 4y
rfir

(1 − yfir Q
) − (y

rfir
+ yfir Q

− yrQ)

2(1 − yfir Q
)

. (3.40)

It is straightforward to compute the ε expansion of the collinear counterterms that we

shall use later. We decompose the expansion into singular terms, finite contributions and

terms that vanish as ε → 0,

C(0,1)
ir ({p}) = Poles C(0,1)

ir ({p}) + Fin C(0,1)
ir ({p}) + O(ε) . (3.41)

The pole parts can be written in the following unified form:

Poles C(0,1)
ir ({p}) = −8παsµ

2ε 1

sir

×〈M(0)
m ({p̃}(ir))| I({p̃}(ir); ε) P̂

(0)
fifr

(zi,r, zr,i, k⊥,i,r; ε) |M(0)
m ({p̃}(ir))〉 , (3.42)

where4

I({p̃}(ir); ε) =
αs

2π
Sε

(
µ2

Q2

)ε ∑

i


T

2
i

1

ε2
+ γi

1

ε
+

∑

k 6=i

T iT k
1

ε
ln yĩk̃


 (3.43)

with the usual flavour constants

γq =
3

2
CF , γg =

β0

2
. (3.44)

The poles of the C(1,0)
ir ({p}) counterterm can be written as

Poles C(1,0)
ir ({p}) = −8παsµ

2ε 1

sir

αs

2π
Sε

[
(T 2

i +T
2
r−T

2
ir)

(
1

ε2
− 1

ε
ln yir

)
+

1

ε

(
γi+γr−γir

)

−1

ε

(
(T 2

i −T
2
r +T

2
ir) ln zi,r+ (T 2

r−T
2
i +T

2
ir) ln zr,i

)]

×〈M(0)
m ({p̃}(ir))|P̂ (0)

fifr
(zi,r, zr,i, k⊥,i,r; ε)|M(0)

m ({p̃}(ir))〉 , (3.45)

where T ir = T i +T r. After the cancellation of the poles is demonstrated (see section 4.2),

in a computer code one uses the finite parts of the counterterms. We collect all such finite

contributions of the counterterms in appendix A.

4Note that I(m, ε) = I(ε) + O(ε0) independently of m.
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3.2.2 Soft-type counterterms

We call the soft and soft-collinear counterterms soft-type terms because they all use the

momentum mapping appropriate to the soft countertem. We define

S(0,1)
rg

({p}) = −8παsµ
2ε

∑

i

∑

k 6=i

1

2
Sik(r)2Re〈M(0)

m ({p̃}(r))|T iT k|M(1)
m ({p̃}(r))〉 , (3.46)

Cirg
S(0,1)

rg
({p}) = 8παsµ

2ε 1

sir

2zi,r

zr,i
T

2
i 2Re〈M(0)

m ({p̃}(r))||M(1)
m ({p̃}(r))〉 , (3.47)

S(1,0)
rg

({p}) = (8παsµ
2ε)2cΓ

∑

i

∑

k 6=i

1

2
Sik(r)

×
[(

CA
1

ε2

πε

sin(πε)

(
1

2
Sik(r)

)ε

cos(πε) +
β0

2ε

µ−2εSε

(4π)2cΓ

)
|M(0)

m;(i,k)({p̃}(r))|2

−2
π

ε

∑

l 6=i,k

(
1

2
Skl(r)

)ε

|M(0)
m;(i,k,l)({p̃}(r))|2

]
, (3.48)

Cirg
S(1,0)

rg
({p}) = −(8παsµ

2ε)2cΓ
1

sir

2zi,r

zr,i
T

2
i (3.49)

×
[(

CA
1

ε2

πε

sin(πε)

(
1

sir

zi,r

zr,i

)ε

cos(πε) +
β0

2ε

µ−2εSε

(4π)2cΓ

)]
|M(0)

m ({p̃}(r))|2 .

The momentum fractions and eikonal functions were defined in eqs. (3.33) and (3.21),

while the m momenta {p̃}(r) ≡ {p̃1, . . . , p̃m+1} (pr is absent) entering the matrix elements

on the right hand sides of eqs. (3.46)–(3.49) are defined as

p̃µ
n = Λµ

ν [Q, (Q − pr)/λr](p
ν
n/λr) , n 6= r , (3.50)

where

λr =
√

1 − yrQ , (3.51)

and

Λµ
ν [K, K̃ ] = gµ

ν − 2(K + K̃ )µ(K + K̃ )ν

(K + K̃ )2
+

2Kµ K̃ ν

K2
. (3.52)

The matrix Λµ
ν [K, K̃ ] generates a (proper) Lorentz transformation, provided K2 = K̃2 6= 0.

This momenum mapping leads to exact phase-space factorization in the form of eq. (3.28),

where

[dp
(r)
1;m(pr;Q)] = J (r)

1;m(pr;Q)
ddpr

(2π)d−1
δ+(p2

r) , (3.53)

with Jacobian

J (r)
1;m(pr;Q) = λ(m−1)(d−2)−2

r Θ(λr) . (3.54)
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Finally, we record the pole parts of the soft-type counterterms:

PolesS(0,1)
rg

({p}) = 8παsµ
2ε

∑

i

∑

k 6=i

1

4
Sik(r)

×〈M(0)
m ({p̃}(r))|

{
I({p̃}(r); ε),T iT k

}
|M(0)

m ({p̃}(r))〉 , (3.55)

Poles Cirg
S(0,1)

rg
({p}) = −8παsµ

2ε 2

sir

zi,r

zr,i
T

2
i

×〈M(0)
m ({p̃}(r))| I({p̃}(r); ε) |M(0)

m ({p̃}(r))〉 , (3.56)

PolesS(1,0)
rg

({p}) = 8παsµ
2ε

∑

i

∑

k 6=i

1

2
Sik(r)|M(0)

m;(i,k)({p̃}
(r))|2

×αs

2π
Sε

[
CA

(
1

ε2
+

1

ε
ln

yik

yirykr
+

1

ε
ln

µ2

Q2

)
+

β0

2ε

]
, (3.57)

Poles Cirg
S(1,0)

rg
({p}) = −8παsµ

2ε 2

sir

zi,r

zr,i
T

2
i |M(0)

m ({p̃}(r))|2

×αs

2π
Sε

[
CA

(
1

ε2
+

1

ε
ln

zi,r

yirzr,i
+

1

ε
ln

µ2

Q2

)
+

β0

2ε

]
. (3.58)

The finite parts are given in appendix A.

4. Counterterms for the integrated approximate cross section

4.1 Factorization in the collinear and soft limits

We wish to construct the approximate cross section
( ∫

1 dσ
RR,A1

m+2

)
A1

by the same proce-

dure we used to construct dσ
RV,A1

m+1 , therefore, we start by studying the infrared limits of

〈M(0)
m+1|I(m, ε)|M(0)

m+1〉 when the momenta of a pair of partons becomes collinear or when

a gluon becomes soft.

4.1.1 Collinear limit

In the limit when the momenta of partons i and r become collinear (as defined precisely

in eqs. (3.1) and (3.3)) we find5

Cir〈M(0)
m+1(pi, pr, . . .)| I(m, ε) |M(0)

m+1(pi, pr, . . .)〉 = 8παsµ
2ε

× 1

sir

(
〈M(0)

m (pir, . . .)| I(m, ε) P̂
(0)
fifr

|M(0)
m (pir, . . .)〉

+Rir(yir, ziy(ir)Q, zry(ir)Q;m, ε)〈M(0)
m (pir, . . .)| P̂ (0)

fifr
|M(0)

m (pir, . . .)〉
)

, (4.1)

where the function Rir represents those terms that appear in addition to the usual collinear

factorization formula of the squared matrix element, due to the presence of the insertion

5Note that the argument of the insertion operator on the right hand side of eq. (4.1) is the same as the

number of coloured external legs in the matrix element.
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operator,

Rir(yir, ziy(ir)Q, zry(ir)Q;m, ε) =
αs

2π
Sε

(
µ2

Q2

)ε

×
[
Ci(ziy(ir)Q;m, ε)T

2
i + Cr(zry(ir)Q;m, ε)T

2
r − C(ir)(y(ir)Q;m, ε)T

2
ir

+(T 2
ir − T

2
i − T

2
r) Sir(yir, ziy(ir)Q, zry(ir)Q;m, ε)

]
. (4.2)

The m parton matrix elements on the right hand side are obtained from the m + 1 parton

matrix elements by removing partons i and r and replacing them with a single parton

denoted by ir in the usual way.

Note that the existence of a universal collinear factorization formula as given in eq. (4.1)

is not guaranteed by the factorization properties of QCD matrix elements, but depends

also on the particular definition of the subtraction term dσ
RR,A1

m+2 , which determines the

functional dependence of the insertion operator on the momenta. In being able to de-

rive eq. (4.1) it is crucially important that the part of I(m, ε) that contains true colour-

correlations, that is Sil(yil, yiQ, ylQ;m, ε), depends on its arguments only through the com-

bination
yil

yiQylQ
. (4.3)

This expression is independent of the momentum fractions in the collinear limit pi||pr.

Consequently, the functions Sil and Srl have the same limit as pi and pr become collinear,

CirSil = CirSrl . (4.4)

This is important because coherent soft-gluon emission from unresolved partons implies

that only the sum of |M(0)
m+1;(i,l)|2+|M(0)

m+1;(r,l)|2 (or |M(0)
m+1;(j,i)|2+|M(0)

m+1;(j,r)|2) factorizes

as

Cir

(
|M(0)

m+1;(i,l)
|2 + |M(0)

m+1;(r,l)
|2

)
= 8παsµ

2ε 1

sir
〈M(0)

m |T irT l P̂
(0)
fifr

|M(0)
m 〉 . (4.5)

Then, if and only if eq. (4.4) is fulfilled, we can combine the collinear limits as

Cir

(
Sil|M(0)

m+1;(i,l)|2 + Srl|M(0)
m+1;(r,l)|2

)
= 8παsµ

2ε S(ir)l
1

sir
〈M(0)

m |T irT l P̂
(0)
fifr

|M(0)
m 〉 .

(4.6)

The insertion operators used in other general NLO schemes do not possess this property.

4.1.2 Soft limit

In computing the limit of 〈M(0)
m+1|I(m, ε)|M(0)

m+1〉 as the momentum of parton r becomes

soft, we need the soft factorization formula for the colour-correlated tree amplitudes as can
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be found in ref. [8]. One finds

Sr〈M(0)
m+1(pr, . . .)| I(m, ε) |M(0)

m+1(pr, . . .)〉 = −8παsµ
2ε

∑

i

∑

k 6=i

1

2
Sik(r)

×
(
〈M(0)

m (. . .)|1
2
{I(m, ε),T iT k}|M(0)

m (. . .)〉

+Rik,r(yik, yir, ykr, yiQ, ykQ, yrQ;m, ε)|M(0)
m;(i,k)(. . .)|2

)
(4.7)

if r is a gluon and Sr〈M(0)
m+1|I(m, ε)|M(0)

m+1〉 = 0 if r is a quark or antiquark. The m

parton matrix elements on the right hand side are obtained from the original m+1 parton

matrix elements by simply removing parton r. In eq. (4.7) the function

Rik,r(yik, yir, ykr, yiQ, ykQ, yrQ;m, ε) = CA
αs

2π
Sε

(
µ2

Q2

)ε (
Cg(yrQ;m, ε)

+Sik(yik, yiQ, ykQ;m, ε) − Sir(yir, yiQ, yrQ;m, ε) − Srk(yrk, yrQ, ykQ;m, ε)
)

(4.8)

represents those terms that appear in addition to the usual soft factorization formula of

the squared matrix element due to the presence of the insertion opeartor.

4.1.3 Matching the collinear and soft limits

The collinear limit of the soft factorization formula eq. (4.7) reads

CirSr〈M(0)
m+1(pi, pr, . . .)| I(m, ε) |M(0)

m+1(pi, pr, . . .)〉 = 8παsµ
2ε 2

sir

zi

zr
T

2
i

×
(
〈M(0)

m (pi, . . .)| I(m, ε) |M(0)
m (pi, . . .)〉 + |M(0)

m (pi, . . .)|2CirRik,r

)
, (4.9)

with

CirRik,r(yik, yir, ykr, yiQ, ykQ, yrQ;m, ε) = CA
αs

2π
Sε

(
µ2

Q2

)ε

×
(
Cg(zry(ir)Q;m, ε) − Sir(yir, ziy(ir)Q, zry(ir)Q;m, ε)

)
. (4.10)

The soft limit of the collinear factorization formula eq. (4.1) is

SrCir〈M(0)
m+1(pi, pr, . . .)| I(m, ε) |M(0)

m+1(pi, pr, . . .)〉 = 8παsµ
2ε 2

sir

1

zr
T

2
i

×
(
〈M(0)

m (pi, . . .)| I(m, ε) |M(0)
m (pi, . . .)〉 + |M(0)

m (pi, . . .)|2SrRir

)
. (4.11)

with

SrRir(yir, ziy(ir)Q, zry(ir)Q;m, ε) = CA
αs

2π
Sε

(
µ2

Q2

)ε

×
(
Cg(zry(ir)Q;m, ε) − Sir(yir, y(ir)Q, zry(ir)Q;m, ε)

)
. (4.12)
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Thus the same arguments as below eq. (3.24) apply here as well, therefore,

Cir(Sr − CirSr)〈M(0)
m+1|I(m, ε)|M(0)

m+1〉 = 0 , (4.13)

Sr(Cir − CirSr)〈M(0)
m+1|I(m, ε)|M(0)

m+1〉 = 0 (4.14)

and our candidate counterterm has the same structure as in eq. (3.27),

A1 〈M(0)
m+1|I(m, ε)|M(0)

m+1〉 =

=
∑

r


∑

i6=r

1

2
Cir +


Sr −

∑

i6=r

CirSr







(
|M(0)

m+1(pi, pr, . . .)|2 ⊗ I(m, ε)
)

. (4.15)

As before the cancellation of the collinear terms in the soft limit requires the symmetry

factor multiplying the collinear term, but not the collinear-soft one.

4.2 Counterterms

In order to define the counterterms, we extend eq. (4.15) over the whole phase space

as done in section 3.2. We introduce the phase space factorization as in eq. (3.28) and

write the subtraction term that regularizes the kinematical singularities of the integrated

approximate cross section in the symbolic form
(∫

1
dσ

RR,A1

m+2

)
A1

= dφm[dp1]A1

(
|M(0)

m+1|2 ⊗ I(m, ε)
)

, (4.16)

where

A1

(
|M(0)

m+1|2 ⊗ I(m, ε)
)

=

=
∑

r


∑

i6=r

1

2
C(0,0⊗I)

ir ({p}) +


S(0,0⊗I)

r ({p}) −
∑

i6=r

CirS(0,0⊗I)
r ({p})







+
∑

r


∑

i6=r

1

2
CR×(0,0)

ir ({p}) +


SR×(0,0)

r ({p}) −
∑

i6=r

CirSR×(0,0)
r ({p})





 . (4.17)

We now define all terms on the right hand side of this equation precisely. The structure of

eq. (4.17) is the same as that of eq. (3.30). Thus defining true subtraction terms starting

from the limiting formulae of the previous subsection follows the steps of section 3.2.

4.2.1 Collinear counterterms

The collinear subtraction terms read

C(0,0⊗I)
ir ({p}) = 8παsµ

2ε 1

sir
(4.18)

×〈M(0)
m ({p̃}(ir))| I({p̃}(ir);m, ε) P̂

(0)
fifr

(zi,r, zr,i, k⊥,i,r; ε) |M(0)
m ({p̃}(ir))〉

and

CR×(0,0)
ir ({p}) = 8παsµ

2ε 1

sir
Rir(yir, zi,ryfir Q

, zr,iyfir Q
;m, ε) (4.19)

×〈M(0)
m ({p̃}(ir))|P̂ (0)

fifr
(zi,r, zr,i, k⊥,i,r; ε)|M(0)

m ({p̃}(ir))〉 .
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Computing the pole parts of eqs. (4.18) and (4.19), we can easily see that

Poles
[
C(0,0⊗I)

ir ({p}) + C(0,1)
ir ({p})

]
= 0 (4.20)

and

Poles
[
CR×(0,0)

ir ({p}) + C(1,0)
ir ({p})

]
= 0 . (4.21)

Therefore, the sum of eqs. (3.31) and (4.18) as well as that of eqs. (3.32) and (4.19) is finite

in d = 4 dimensions.

4.2.2 Soft-type counterterms

The soft-type counterterms are defined as

S(0,0⊗I)
rg

({p}) = −8παsµ
2ε

∑

i

∑

k 6=i

1

4
Sik(r)

×〈M(0)
m ({p̃}(r))|{I({p̃}(r);m, ε),T iT k}|M(0)

m ({p̃}(r))〉 , (4.22)

Cirg
S(0,0⊗I)

rg
({p}) = 8παsµ

2ε 1

sir

2zi,r

zr,i

×T
2
i 〈M(0)

m ({p̃}(r))|I({p̃}(r);m, ε)|M(0)
m ({p̃}(r))〉 , (4.23)

SR×(0,0)
rg

({p}) = −8παsµ
2ε

∑

i

∑

k 6=i

1

2
Sik(r) |M(0)

m;(i,k)({p̃}
(r))|2

×Rik,r(yik, yir, ykr, yiQ, ykQ, yrQ;m, ε) , (4.24)

Cirg
SR×(0,0)

rg
({p}) = 8παsµ

2ε 1

sir

2zi,r

zr,i
T

2
i |M(0)

m ({p̃}(r))|2CA
αs

2π
Sε

(
µ2

Q2

)ε

×
(
Cg(zr,iy(ir)Q;m, ε)−Sir(yir, zi,ry(ir)Q, zr,iy(ir)Q;m, ε)

)
. (4.25)

We can simplify the arguments in the second line of eq. (4.25) using eq. (3.33),

Cg(zr,iy(ir)Q;m, ε)−Sir(yir, zi,ry(ir)Q, zr,iy(ir)Q;m, ε)=Cg(yrQ;m, ε)−Sir(yir, yiQ, yrQ;m, ε).

(4.26)

Similarly to the collinear cases, the pole parts cancel term by term between eqs. (3.46)–

(3.49) and eqs. (4.22)–(4.25),

Poles
[
S(0,0⊗I)

r ({p}) + S(0,1)
r ({p})

]
= 0 , (4.27)

Poles
[
CirS(0,0⊗I)

r ({p}) + CirS(0,1)
r ({p})

]
= 0 , (4.28)

Poles
[
SR×(0,0)

r ({p}) + S(1,0)
r ({p})

]
= 0 , (4.29)

Poles
[
CirSR×(0,0)

r ({p}) + CirS(1,0)
r ({p})

]
= 0 . (4.30)

Consequently, the sum of eqs. (3.46) and (4.22), that of eqs. (3.47) and (4.23), that of

eqs. (3.48) and (4.24) and that of eqs. (3.49) and (4.25) are finite in d = 4 dimensions.
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Figure 1: Graphical representation of the squared matrix element and the subtraction terms.

We help the reader in grasping the various cancellations by visualizing the subtraction

terms in figure 1. The first picture corresponds to the squared matrix element of the m+1

final-state partons. The fully shaded circle represents the Born amplitude, while the circle

with a whole is the one-loop amplitude. The following terms in the first squared brackets

correspond to the terms that build A1 2Re〈M(0)
m+1||M

(1)
m+1〉, defined in eq. (3.30); the

first one represents (0,1)-type terms like C(0,1)
ir ({p}) and the second is for (1,0)-type terms

such as C(1,0)
ir ({p}). The first picture in the second line is the result of the integration

in eq. (2.21). Finally, the terms in the second squared brackets represent terms that

contribute to A1

(
|M(0)

m+1|2 ⊗ I(m, ε)
)
, defined in eq. (4.17); the first representing terms

of the (0, 0⊗ I)-type, such as C(0,0⊗I)
ir ({p}), while the second one stands for R× (0, 0)-type

terms like CR×(0,0)
ir ({p}). The factorized one-parton factors correspond to Altarelli-Parisi

kernels, with azimuthal correlations included, or eikonal factors, with colour-correlations

included, either at tree-level (fully shaded circles), or at one-loop (circles with holes), or

R-functions (boxes).

The cancellations of the ε poles occurs vertically, term by term as shown previously.

The regularization of the kinematical singularities takes place horizontally, between the

first term and the terms in the following brackets, separately in each line. Kinematical

singularities, introduced by the subtractions terms, are screened by the jet function, Jm,

just as in NLO computations.

We conclude that the (m + 1)-parton contribution in eq. (1.4) is free of ε poles as

well as unscreened kinematical singularities. We can set ε = 0 and compute the integral

of dσNNLO
m+1 by standard Monte Carlo methods. Such an integration uses the finite parts

in the ε-expansion of the subtraction terms as ε → 0. The finite parts of the integrated

approximate cross section of eq. (2.21) can be found in ref. [11],6 while those of eq. (3.30)

together with the finite parts of the counterterms in eq. (4.17) are presented in appendix A.

5. Numerical results

In this paper we have defined explicitly all subtraction terms that are needed to make dσRV
m+1

integrable in d = 4 dimensions for processes without coloured partons in the initial state.

6Notice the shift of m by one unit in this paper (m → m + 1) as compared to the value in ref. [11].
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n C
(n)
τ ;4 C

(n)
C;4

1 -(1.23 ± 0.01) · 103 -(4.33 ± 0.05) · 103

2 -(2.55 ± 0.01) · 102 -(3.25 ± 0.02) · 103

3 -(4.79 ± 0.03) · 101 -(1.80 ± 0.01) · 103

Table 1: The moments C
(n)
τ ;4 and C

(n)
C;4.

We have proven the cancellation of the ε poles explicitly. In order to demonstrate that

the subtraction terms indeed regularize the cross section for the real-virtual correction,

we consider the contribution to the theoretical predictions for the three-jet event-shape

distributions thrust (T ) and C-parameter in electron-positron annihilation, when the jet

function is a functional

Jn(p1, . . . , pn;O) = δ(O − O3(p1, . . . , pn)) , (5.1)

with O3(p1, . . . , pn) being the value of either τ ≡ 1− T or C for a given event (p1, . . . , pn).

Starting from randomly chosen phase space points and approaching the singly-unresolved

(soft and/or collinear) regions of the phase space in successive steps, we have checked

numerically that the sum of the subtraction terms has the same limits (up to integrable

square-root singularities) as the squared matrix element itself.

The perturbative expansion of the nth moment of a three-jet observable at a fixed scale

µ = Q and NNLO accuracy can be parametrised as

〈On〉 ≡
∫

dO On 1

σ0

dσ

dO
(O) =

(
αs(Q)

2π

)
A

(n)
O +

(
αs(Q)

2π

)2

B
(n)
O +

(
αs(Q)

2π

)3

C
(n)
O , (5.2)

where according to eq. (1.2), the NNLO correction is a sum of three contributions,

C
(n)
O = C

(n)
O;5 + C

(n)
O;4 + C

(n)
O;3 . (5.3)

Carrying out the phase space integrations in eq. (1.4), we computed the four-parton con-

tribution C
(n)
O;4 as defined in this article. The predictions for the first three moments of τ

and the C-parameter, obtained using about four million Monte Carlo events, are presented

in table 1. In performing the numerical integrations, we do not encounter more severe

numerical problems than known from computing the real-emission contribution in NLO

computations and the computation of differential distributions does not pose any problem.

The required CPU time is however much longer because of the much more cumbersome

expressions that enter the various loop matrix elements.

6. Conclusions

In a companion paper [10] we generalized the dipole subtraction scheme to computing

NNLO corrections to QCD jet cross sections to processes without coloured partons in the

initial state. The scheme is completely general in the sense that any number of massless

coloured final-state partons (massive vector bosons are assumed to decay into massless

fermions) are allowed provided the necessary squared matrix elements are known.
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Three types of corrections contribute to the NNLO corrections: the doubly-real, the

real-virtual and the doubly-virtual ones. In ref. [10] we defined the subtraction terms for

the doubly-real emissions; those to the real-virtual correction can be found in the present

paper. By rendering these two contributions finite in d = 4 dimensions, the KLN theorem

ensures that for infrared safe observables adding the subtractions above to the doubly-

virtual correction that becomes also finite in d = 4 dimensions.

The subtraction terms for the real-virtual corrections presented here are local in d =

4−2ε dimensions, include complete colour and azimuthal correlations. The expressions were

derived by extending the singly-unresolved limits of the one-loop squared matrix elements

over the whole phase space and also extending the singly-unresolved limits of the integrated

approximate cross section, used for regularizing the kinematical singularities of the cross

section for doubly-real emmissions over the singly-unresolved regions of the phase space.

In order to demonstrate that the subtracted cross section is indeed integrable, we

have computed the corresponding contributions to the first three moments of two three-jet

event-shape observables, the thrust and the C-parameter. In performing the numerical

integrations, we do not encounter more severe numerical problems than known from NLO

computations. The required CPU time is however much longer because of the much more

cumbersome expressions that enter the various loop matrix elements.
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A. Finite parts of the subtraction terms

In this appendix we present the finite parts, as defined in the decomposition (3.41), of

eqs. (3.30) and (4.17), term by term. We start with the collinear counterterms. The finite

part of the sum of eqs. (3.31) and (4.18) is

Fin
[
C(0,1)

ir ({p}) + C(0,0⊗I)
ir ({p})

]
= 4α2

s

1

sir

×
[

2Re〈M(0)
m ({p̃}(ir))| P̂ (0)

fifr
(zi,r, zr,i, k⊥,i,r)Fin |M(1)

m ({p̃}(ir))〉

+
∑

i

(
∑

k 6=i

Fin
[
Sik(yĩk̃, yĩQ, yk̃Q;m) + CS(m)

]

×〈M(0)
m ({p̃}(ir))|T iT k P̂

(0)
fifr

(zi,r, zr,i, k⊥,i,r) |M(0)
m ({p̃}(ir))〉

+Fin
[
Ci(yĩQ;m) + CS(m)

]

×T
2
i 〈M(0)

m ({p̃}(ir))| P̂ (0)
fifr

(zi,r, zr,i, k⊥,i,r) |M(0)
m ({p̃}(ir))〉

)]
, (A.1)
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where the finite part of the one-loop amplitude is defined by the following equation:

|M(1)
m ({p})〉 = −1

2
I({p}; ε)|M(0)

m ({p})〉 +
αs

2π
Fin |M(1)

m ({p})〉 , (A.2)

with I({p}; ε) given in eq. (3.43). The finite parts of the functions Sik + CS and Ci + CS

can be found in the appendix of ref. [11]. Next we turn to the finite parts of eqs. (3.32)

and (4.19), which are given separately for the various flavour combinations. For fi = fr = g:

Fin
[
C(1,0)

gigr
({p}) + CR×(0,0)

gigr
({p})

]
= CA 4α2

s

1

sir

×
[(

Fin
[1

2

(
Cgg(zi,ryfir Q

;m) + Cgg(zr,iyfir Q
;m) − Cgg(yfir Q

;m)
)

+nf

(
Cqq̄(zi,ryfir Q;m) + Cqq̄(zr,iyfir Q;m) − Cqq̄(yfir Q;m)

)

−Sir(yir, zi,ryfir Q
, zr,iyfir Q

;m) − CS(m)
]

−1

2
ln2 zi,r

zr,i
− 1

2
ln2 yir − ln yir ln(zi,rzr,i) +

π2

3
+

β0

2CA
ln

µ2

Q2

)

×〈M(0)
m ({p̃}(ir))| P̂ (0)

gigr
(zi,r, zr,i, k⊥,i,r) |M(0)

m ({p̃}(ir))〉

−2

3
(CA − 2TRnf) 〈M(0)

m ({p̃}(ir))|
kµ
⊥,i,rk

ν
⊥,i,r

k2
⊥,i,r

|M(0)
m ({p̃}(ir))〉

]
. (A.3)

For fi = q, fr = q̄:

Fin
[
C(1,0)

qiq̄r
({p}) + CR×(0,0)

qiq̄r
({p})

]
= 4α2

s

1

sir

×
(

CF Fin
[
Cqg(zi,ryfir Q

;m) + Cqg(zr,iyfir Q
;m)

]

−CA Fin
[1

2
Cgg(yfir Q;m) + nfCqq̄(yfir Q;m)

]

+(CA − 2CF)Fin
[
Sir(yir, zi,ryfir Q

, zr,iyfir Q
;m) + CS(m)

]

+(CA − 2CF)

(
1

2
ln2 yir −

π2

2
+ 1

)
+ 2(γg − γq)(2 − ln yir)

−CA

(
1

2
ln2 zi,r

zr,i
+ ln yir ln(zi,r zr,i) +

π2

6

)
+

1

9
(CA + 4TRnf)

+
β0

2
ln

µ2

Q2

)
〈M(0)

m ({p̃}(ir))| P̂ (0)
qi q̄r

(zi,r, zr,i, k⊥,i,r) |M(0)
m ({p̃}(ir))〉 . (A.4)
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For fi = q, fr = g:

Fin
[
C(1,0)

qigr
({p}) + CR×(0,0)

qigr
({p})

]
= 4α2

s

1

sir

×
[(

CF Fin
[
Cqg(zi,ryfir Q;m) − Cqg(yfir Q;m)

]

+CA Fin
[1

2
Cgg(zr,iyfir Q

;m) + nfCqq̄(zr,iyfir Q
;m)

]

−CA Fin
[
Sir(yir, zi,ryfir Q

, zr,iyfir Q
;m) + CS(m)

]

+2CF

(
Li2

(
−zr,i

zi,r

)
− ln yir ln zi,r

)

−CA

(
1

2
ln2 zi,r

zr,i
+

1

2
ln2 yir + ln yir ln

zr,i

zi,r
+ 2Li2

(
−zr,i

zi,r

)
− π2

3

)

+
β0

2
ln

µ2

Q2

)
〈M(0)

m ({p̃}(ir))| P̂ (0)
qigr

(zi,r, zr,i) |M(0)
m ({p̃}(ir))〉

+CF(CA − CF)|M(0)
m ({p̃}(ir))|2

]
. (A.5)

The case of fi = g, fr = q is obtained from the latter with the i ↔ r substitution.

The finite parts of the soft subtractions are as follows:

Fin
[
S(0,1)

ir ({p}) + S(0,0⊗I)
ir ({p})

]
= −4α2

s

∑

i

∑

k 6=i

1

2
Sik(r)

×
[

2Re〈M(0)
m ({p̃}(r))|T iT k Fin |M(1)

m ({p̃}(r))〉

+
∑

j

(
∑

l 6=j

1

2
Fin

[
Sjl(yj̃ l̃, yj̃Q, yl̃Q;m) + CS(m)

]
|M(0)

m;(i,k)(j,l)({p̃}
(r))|2

+Fin
[
Cj(yj̃Q;m) + CS(m)

]
T

2
j |M

(0)
m;(i,k)({p̃}(r))|2

)]
, (A.6)

Fin
[
S(1,0)

ir ({p}) + SR×(0,0)
ir ({p})

]
= 4α2

s

∑

i

∑

k 6=i

{
CA

1

2
Sik(r) |M(0)

m;(i,k)({p̃}
(r))|2

×
(

1

2
ln2 yik

yirykr
− π2

3
− β0

2CA
ln

µ2

Q2
−Fin

[1

2
Cgg(yrQ;m)+nfCqq̄(yrQ;m)

]

−Fin
[
Sik(yik, yiQ, ykQ;m)−Sir(yir, yiQ, yrQ;m)−Skr(ykr, ykQ, yrQ;m)− CS(m)

])

−2π
∑

l 6=i,k

ln
ykl

ykrylr
|M(0)

m;(i,k,l)({p̃}(r))|2
}

. (A.7)
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Finally, we present the finite parts of the collinear-soft subtractions:

Fin
[
CirS(0,1)

r ({p}) + CirS(0,0⊗I)
r ({p})

]
= 4α2

s

2

sir

zi,r

zr,i
T

2
i

×
[

2Re〈M(0)
m ({p̃}(r))| Fin |M(1)

m ({p̃}(r))〉

+
∑

j

(
∑

l 6=j

Fin
[
Sjl(yj̃l̃, yj̃Q, yl̃Q;m) + CS(m)

]
|M(0)

m;(j,l)({p̃}
(r))|2

+Fin
[
Cj(yj̃Q;m) + CS(m)

]
T

2
j |M(0)

m ({p̃}(r))|2
)

, (A.8)

Fin
[
CirS(1,0)

r ({p}) + CirSR×(0,0)
r ({p})

]
= −4α2

s CA
2

sir

zi,r

zr,i
T

2
i |M(0)

m ({p̃}(r))|2

×
(

1

2
ln2 zi,r

yirzr,i
− π2

3
− β0

2CA
ln

µ2

Q2
−Fin

[1

2
Cgg(yrQ;m) + nfCqq̄(yrQ;m)

]

+Fin
[
Sir(yir, yiQ, yrQ;m) + CS(m)

])
. (A.9)

For the sake of completeness, we recall the finite part of the first two terms in eq. (1.4)

from ref. [11] adapted to the present case:

[
dσRV

m+1 + dσR
m+1 ⊗ I(m, ε)

]
ε=0

= N αs

2π

∑

{m+1}

dφm+1
1

S{m+1}

×
{

2Re〈M(0)
m+1({p})|Fin |M(1)

m+1({p})〉

+
∑

i

[
∑

k 6=i

Fin [Sik(yik, yiQ, ykQ;m) + CS(m)] |M(0)
m+1;(i,k)({p})|2

+Fin [Ci(yiQ;m) + CS(m)] T
2
i |M(0)

m+1({p})|2
]}

. (A.10)
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